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Super resolution (SR) techniques play a critical role in enhancing the 

quality of satellite imagery by reconstructing high resolution (HR) 

images from low resolution (LR) inputs. This study investigates the 

application of the Enhanced Super Resolution Generative 

Adversarial Network (ESRGAN) to improve the spatial resolution of 

satellite images. The ESRGAN framework integrates a Residual-in-

Residual Dense Block (RRDB) generator, a Relativistic average GAN 

(RaGAN) discriminator, and an improved perceptual loss function 

to achieve sharper textures and more realistic structures. The 4× 

Satellite Image Super Resolution dataset, consisting of paired LR (2 

m/pixel) and HR (0.5 m/pixel) images, was employed. Quantitative 

evaluation was conducted using Peak Signal-to-Noise Ratio (PSNR) 

and Structural Similarity Index Measure (SSIM), with Lanczos5 

interpolation adopted as a baseline for comparison. Experimental 

results on ten test images show that ESRGAN consistently 

outperforms Lanczos5, achieving an average PSNR of 25.976 dB and 

an average SSIM of 0.750, compared to 25.179 dB and 0.698, 

respectively, for Lanczos5. Qualitative assessments further confirm 

that ESRGAN effectively restores high frequency details, enhances 

fine textures, and preserves object boundaries more accurately than 

the interpolation method.  
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1. Introduction 

High resolution (HR) satellite imagery is essential for mapping, land-use monitoring, and urban analytics 

because it enables reliable interpretation of fine spatial details such as road networks, buildings, and parcel 

boundaries. However, sensor limitations, high acquisition costs, and the substantial bandwidth required for 
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transmission mean that many workflows rely on low resolution (LR) imagery that is inadequate for 

operational analysis. Super-resolution (SR) addresses this gap by reconstructing spatial detail to improve the 

readability of edges, repeating patterns, and semantically important structures. 

Classical interpolation methods such as bicubic often yield blurred edges and unnatural textures, which 

diminishes the imagery’s operational value. Recent advances in deep learning for single-image super-

resolution (SISR) have changed this landscape: SRGAN introduced an adversarial formulation with 

perceptual losses that prioritize visual realism rather than merely maximizing PSNR [1]. EDSR further refined 

residual architectures by removing superfluous modules, delivering consistent quantitative gains across 

standard SISR benchmarks [2]. Within remote sensing, edge-aware GAN-based methods have been shown to 

sharpen linear structures and man-made objects in satellite scenes [3]. 

Following EDSR, the Residual Channel Attention Network (RCAN) introduced a residual-in-residual 

architecture with channel attention that adaptively emphasizes informative feature channels, delivering 

consistent gains in single-image SR and establishing a strong post-EDSR baseline [4]. More recently, 

Transformer-based architectures such as SwinIR leverage shifted-window self-attention to capture long-range 

dependencies, improving the recovery of both local details and global context in image restoration including 

single-image super-resolution for satellite data [5]. Building on this foundation, this study evaluates ESRGAN 

for satellite imagery to assess how well the model sharpens edges and textures relevant to operational 

mapping and image analytics, and to discuss implications for perceptual quality and practical utility in 

remote-sensing workflows. 

2. Literature Review 
Super-resolution (SR) has been widely studied in image and video processing, with the goal of reconstructing 

high-resolution (HR) images from low-resolution (LR) inputs. Approaches are generally categorized into 

multi-image super-resolution (MISR) and single-image super-resolution (SISR). MISR exploits multiple LR 

observations of the same scene for fusion and reconstruction, but this requires well-aligned images that are 

often unavailable in satellite imaging. In contrast, SISR aims to recover HR content from a single LR input and 

has therefore become the dominant focus in remote sensing applications [6]. 
The most basic SISR approaches rely on interpolation techniques, such as nearest-neighbor, bilinear, 

bicubic, spline, and Lanczos methods [7]. These methods are computationally efficient but operate solely on 

pixel intensities without considering image semantics. Consequently, they often produce blurred textures, 

ringing artifacts, and poorly defined edges. 

A breakthrough came with deep learning–based methods. Dong et al. [8] introduced SRCNN (Super-

Resolution Convolutional Neural Network), the first end-to-end trainable CNN for image SR, which 

significantly outperformed classical interpolation. Building on this, Ledig et al. [1] developed SRGAN, 

introducing adversarial and perceptual losses to emphasize natural textures over pixel similarity. Lim et al. 

[2] later proposed EDSR (Enhanced Deep Residual Networks), simplifying residual structures and achieving 

state-of-the-art performance on standard benchmarks. 

Further advancements were demonstrated by RCA-GAN by Cai et al. [9], which introduced a Residual 

Channel Attention Block within a GAN structure, enabling the model to adaptively emphasize critical high-

frequency features and generate more natural textures and finer details. Recent studies, including Asril et al. 

[10], have applied ESRGAN experimentally, confirming its potential in practical settings. 

In the remote sensing domain, GAN-based approaches have demonstrated particular promise. 

Lavreniuk et al. [11] applied GANs for satellite data super-resolution, showing improvements in feature 

reconstruction. Similarly, Jiang et al. [3] introduced edge-enhanced GANs that effectively preserved structural 

elements such as roads and parcel boundaries. More broadly, reviews such as Xu et al. [12] highlight the 

growing role of deep learning–based SR in Earth observation, with demonstrated benefits for land-use 

monitoring, urban mapping, and environmental analysis. 

Despite these advances, challenges remain regarding model generalization across different satellite 

sensors, spectral ranges, and acquisition conditions. Many SR models are trained on natural image datasets 
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and applied in fields such as medicine [13] and agriculture [14], which differ significantly from satellite 

imagery in terms of structure and noise characteristics. This motivates the present study, which evaluates 

ESRGAN on a dedicated satellite dataset and benchmarks it against classical interpolation, with the aim of 

improving both perceptual quality and analytical value in operational applications. 

3. Materials and Methods 

3.1 Materials 

The dataset used in this study is the 4x Satellite Image Super Resolution dataset [15], which consists of paired 

high resolution (HR) and low resolution (LR) satellite images specifically designed for 4× super-resolution 

tasks. The HR images have a spatial resolution of 0.5 meters per pixel, serving as the ground truth, while the 

LR images have a resolution of 2 meters per pixel, corresponding to the input data for upscaling. All image 

pairs are geographically aligned, ensuring pixel-to-pixel correspondence between HR and LR images. This 

dataset provides a suitable benchmark for evaluating the proposed super resolution method due to its high-

quality alignment and clearly defined resolution scaling. 

3.2 Methods 

This study employs the Enhanced Super Resolution Generative Adversarial Network (ESRGAN) as the 

primary method for generating high-resolution satellite images from low resolution inputs. ESRGAN is a 

deep learning–based approach that enhances image details, enabling the reconstruction of sharper textures 

and more realistic structures [16]. Fig. 1. illustrates the block diagram of the process, from the low resolution 

input to the high resolution output. 

 

Fig. 1 Workflow of the super resolution experiment using ESRGAN 

The Enhanced Super Resolution Generative Adversarial Network (ESRGAN) is an advancement over 

SRGAN aimed at narrowing the gap between generated super-resolved images and the ground truth in terms 

of sharpness and texture detail. The improvements are made in three main areas. First, the generator 

architecture replaces the SRGAN’s basic block with a Residual-in-Residual Dense Block (RRDB), which offers 

higher capacity and training stability, removes Batch Normalization (BN) to reduce artifacts and improve 

generalization, and applies residual scaling with smaller weight initialization to enable stable training of very 

deep networks. Second, the discriminator is enhanced by adopting the Relativistic average GAN (RaGAN) 

via the Relativistic average Discriminator (RaD), which judges image realism in a relative sense rather than 

absolute, helping the generator to produce more realistic textures. Third, the perceptual loss is improved by 

using VGG features before activation instead of after, which has been shown to yield sharper edges and more 

visually pleasing results compared to the original SRGAN approach [17]. 

In the generator, RRDB integrates multi-level residual learning with dense connections, leveraging the 

benefits of deeper residual structures to enhance feature representation. Removing BN not only reduces 

computational complexity but also prevents artifacts that tend to occur in deep networks under the GAN 

framework. On the discriminator side, RaGAN allows the model to benefit from gradients derived from both 

real and generated data simultaneously, improving the learning of texture details and edge sharpness [18]. 

Additionally, the pre-activation–based perceptual loss addresses the shortcomings of conventional post-

activation loss, which often results in highly sparse activations and inconsistent brightness compared to the 

ground truth. Through this combination of architectural enhancements, loss function refinements, and 



 
Journal of Intelligent Computing, Systems, and Applications Vol. 1 No. 1 (2025) p. 39-47 42 

 

 

training strategies, ESRGAN consistently outperforms state-of-the-art methods in both image sharpness and 

fine visual detail. 

As a classical baseline, Lanczos5 interpolation is used for comparison with the proposed ESRGAN 

method. Lanczos interpolation is a resampling method used to increase or decrease image resolution while 

preserving detail and clarity. It employs the Lanczos kernel, a windowed sinc function designed to produce 

smooth and consistent interpolations. Applied systematically across both image rows and columns, Lanczos 

interpolation enables accurate upscaling and downscaling with high smoothness, making it a valuable 

technique for improving the quality of resampled images [19 – 20]. 

3.3 Evaluation Metrics 

To objectively assess the performance of the super-resolution method, a quantitative evaluation metric was 

employed to compare the reconstructed images with the corresponding high-resolution ground truth. In this 

study, the Peak Signal-to-Noise Ratio (PSNR) was used, as it is widely adopted in image quality assessment 

for super-resolution tasks. PSNR measures the fidelity of the reconstructed image by quantifying the ratio 

between the maximum possible signal power and the noise introduced during reconstruction. A higher PSNR 

value indicates better reconstruction quality [21 – 22]. The PSNR, measured in decibels (dB), can be calculated 

using the following formula: 

 

𝑃𝑆𝑁𝑅 = 10𝐿𝑜𝑔10 (
𝑨2

1
𝒏

∑ (𝒀(𝒊) − 𝒀̂(𝒊))
2𝒏

𝑖=1

) (1) 

 

For an 8-bit image, A is typically 255 and represents the maximum possible pixel value in the image, 

determined by the number of bits used in the pixel representation. n denotes the total number of pixels in the 

image, Y(i) is the value of the i-th pixel in the ground truth image, and Ŷ(i) is the value of the i-th pixel in the 

reconstructed image. 

On the other hand, in contrast to PSNR which operates on absolute pixel-wise differences, the Structural 

Similarity Index Measure (SSIM) is designed to model the human visual system’s sensitivity to structural 

information in images. SSIM is a widely used perceptual metric for assessing image quality by measuring the 

degree of similarity between two images. Its value ranges from 0 to 1, with higher values indicating lower 

distortion. An SSIM score of 1 indicates that the two images are perfectly identical [23]. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 +  𝑐1)(2𝜎xy + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 (2) 

 

Mathematically, the Structural Similarity Index Measure (SSIM) between two image patches x and y is 

defined as shown in Eq. (2). In this formulation, 𝜇𝑥 and 𝜇𝑦 denote the mean intensity values of images x and 

y, representing luminance. The terms 𝜎𝑥
2 and 𝜎𝑦

2 correspond to the variances of x and y, which capture contrast 

information, while 𝜎xy represents the covariance between the two images, reflecting their structural similarity. 

To guarantee numerical stability, particularly when the denominators are close to zero, two small constants, 

𝑐1 and 𝑐2 are incorporated into the equation. 

4. Results and Discussion 

This section presents and discusses the experimental results obtained from applying the super-resolution 

method to the satellite image dataset. The quantitative evaluation uses the Peak Signal-to-Noise Ratio (PSNR) 

to measure the fidelity of the reconstructed images against the high-resolution ground truth. The results are 

analyzed to identify performance trends across different test images. In this research, we used ten different 

images, and the PSNR results are presented in Table 1. For comparison, Lanczos5 interpolation is also 

evaluated as a classical baseline to provide a quantitative reference against the ESRGAN results. 
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Table 1 PSNR Evaluation for 10 Images in Super-Resolution 

Image Number PSNR (dB) 

ESRGAN LANCZOS5 

1 25.90 24.79 

2 26.30 25.59 

3 26.64 26.38 

4 25.63 24.74 

5 27.37 26.18 

6 25.16 24.03 

7 25.62 25.19 

8 25.46 24.93 

9 26.49 25.70 

10 25.19 24.26 

 

Based on Table 1, the ESRGAN method consistently outperforms the Lanczos5 method across all test 

images. The average PSNR value for ESRGAN is 25.976 dB, while Lanczos5 achieves an average of 25.179 dB. 

This indicates that the reconstructed images produced by ESRGAN are closer to the high-resolution ground 

truth. The largest improvement is observed in image number 5, with a difference of 1.19 dB, while the smallest 

improvement is found in image number 3, with a difference of only 0.26 dB. These quantitative results 

demonstrate that ESRGAN excels in preserving detail and sharpness in satellite images compared to classical 

resampling methods such as Lanczos5. This consistent improvement shows that deep learning–based 

approaches can deliver better results than conventional interpolation. 

In addition to PSNR, the Structural Similarity Index Measure (SSIM) was employed to further assess the 

perceptual quality of the reconstructed images. Table 2 summarizes the SSIM values obtained for ESRGAN 

and Lanczos5 across ten test images. Similar to the PSNR results, ESRGAN consistently achieves higher SSIM 

scores than Lanczos5. The average SSIM for ESRGAN is 0.750, compared to 0.698 for Lanczos5, indicating that 

ESRGAN is more effective in preserving structural information and visual similarity to the ground truth. 

These results reinforce the conclusion that ESRGAN not only reduces distortion but also maintains perceptual 

fidelity better than the classical interpolation method. 

Table 2 SSIM Evaluation for 10 Images in Super-Resolution 

Image Number SSIM 

ESRGAN LANCZOS5 

1 0.762 0.699 

2 0.760 0.714 

3 0.718 0.680 

4 0.740 0.681 

5 0.767 0.717 

6 0.772 0.696 

7 0.726 0.690 

8 0.730 0.685 

9 0.759 0.714 

10 0.765 0.701 
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The visual results in this section present a qualitative comparison between the low-resolution inputs and 

the corresponding super resolution outputs produced by ESRGAN. From the ten test images used in this 

study, three representative examples, namely images 1, 3, and 5, are selected for display. These examples 

highlight the visual improvements achieved by the super-resolution method, particularly in enhancing fine 

details and restoring sharper textures in satellite imagery. 

The images in Fig. 2, Fig. 3, and Fig. 4 show a qualitative comparison between the low-resolution inputs, 

the super-resolved outputs produced by ESRGAN, and the results obtained using Lanczos5 interpolation. 

Compared to the low-resolution images, both methods improve clarity, but ESRGAN produces sharper edges, 

clearer building outlines, and more distinguishable fine details. In contrast, Lanczos5 provides smoother but 

less detailed reconstructions, highlighting the advantage of deep learning–based approaches over classical 

interpolation. These visual enhancements demonstrate the method’s effectiveness of reconstructing high-

frequency details that are lost in low resolution images and align with the quantitative PSNR results, further 

confirming the effectiveness of ESRGAN in enhancing satellite imagery. 

Fig. 2 Image 1 (a) Low resolution; (b) Lanczos5; (c) ESRGAN 

Fig. 3 Image 3 (a) Low resolution; (b) Lanczos5; (c) Super resolution 

 

   
(a) (b) (c) 

   
(a) (b) (c) 
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Fig. 4 Image 5 (a) Low resolution; (b) Lanczos5; (c) Super resolution 

5. Conclusion 

This study demonstrated the effectiveness of the Enhanced Super Resolution Generative Adversarial Network 

(ESRGAN) in improving the quality of low-resolution satellite imagery. Quantitative evaluation using Peak 

Signal-to-Noise Ratio (PSNR) showed that ESRGAN consistently outperformed the classical Lanczos5 

interpolation method across all test images. The largest PSNR gain of 1.19 dB was observed for image 5, while 

the smallest gain of 0.26 dB occurred for image 3. Similarly, ESRGAN achieved higher Structural Similarity 

Index Measure (SSIM) scores, with the most significant improvement of 0.076 observed for image 6 and the 

smallest improvement of 0.036 for image 7. Qualitative analysis further confirmed these findings, where 

ESRGAN outputs exhibited sharper edges, clearer object boundaries, and more distinguishable fine details in 

urban and natural features. These results indicate that deep learning–based super resolution methods, such 

as ESRGAN, are highly effective in reconstructing high-frequency details and enhancing the visual quality of 

satellite imagery compared to conventional interpolation techniques. 

For future work, several directions can be explored to further strengthen the evaluation of super-resolution 

methods. First, a closer inspection of specific features such as roads, rooftops, and vegetation could provide 

more detailed insights into the visual improvements achieved by ESRGAN. Second, in addition to PSNR and 

SSIM, the Learned Perceptual Image Patch Similarity (LPIPS) metric may be incorporated to better capture 

perceptual quality from a human-visual perspective. Finally, further comparisons with other deep learning–

based super-resolution architectures, such as RCAN, SwinIR, or EDSR, could provide a more comprehensive 

benchmark. 
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