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Keywords satellite images. The ESRGAN framework integrates a Residual-in-

Residual Dense Block (RRDB) generator, a Relativistic average GAN
(RaGAN) discriminator, and an improved perceptual loss function
to achieve sharper textures and more realistic structures. The 4x
Satellite Image Super Resolution dataset, consisting of paired LR (2
m/pixel) and HR (0.5 m/pixel) images, was employed. Quantitative
evaluation was conducted using Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM), with Lanczos5
interpolation adopted as a baseline for comparison. Experimental
results on ten test images show that ESRGAN consistently
outperforms Lanczos5, achieving an average PSNR of 25.976 dB and
an average SSIM of 0.750, compared to 25.179 dB and 0.698,
respectively, for Lanczos5. Qualitative assessments further confirm
that ESRGAN effectively restores high frequency details, enhances
fine textures, and preserves object boundaries more accurately than
the interpolation method.
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1. Introduction

High resolution (HR) satellite imagery is essential for mapping, land-use monitoring, and urban analytics
because it enables reliable interpretation of fine spatial details such as road networks, buildings, and parcel
boundaries. However, sensor limitations, high acquisition costs, and the substantial bandwidth required for
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transmission mean that many workflows rely on low resolution (LR) imagery that is inadequate for
operational analysis. Super-resolution (SR) addresses this gap by reconstructing spatial detail to improve the
readability of edges, repeating patterns, and semantically important structures.

Classical interpolation methods such as bicubic often yield blurred edges and unnatural textures, which
diminishes the imagery’s operational value. Recent advances in deep learning for single-image super-
resolution (SISR) have changed this landscape: SRGAN introduced an adversarial formulation with
perceptual losses that prioritize visual realism rather than merely maximizing PSNR [1]. EDSR further refined
residual architectures by removing superfluous modules, delivering consistent quantitative gains across
standard SISR benchmarks [2]. Within remote sensing, edge-aware GAN-based methods have been shown to
sharpen linear structures and man-made objects in satellite scenes [3].

Following EDSR, the Residual Channel Attention Network (RCAN) introduced a residual-in-residual
architecture with channel attention that adaptively emphasizes informative feature channels, delivering
consistent gains in single-image SR and establishing a strong post-EDSR baseline [4]. More recently,
Transformer-based architectures such as SwinIR leverage shifted-window self-attention to capture long-range
dependencies, improving the recovery of both local details and global context in image restoration including
single-image super-resolution for satellite data [5]. Building on this foundation, this study evaluates ESRGAN
for satellite imagery to assess how well the model sharpens edges and textures relevant to operational
mapping and image analytics, and to discuss implications for perceptual quality and practical utility in
remote-sensing workflows.

2. Literature Review
Super-resolution (SR) has been widely studied in image and video processing, with the goal of reconstructing
high-resolution (HR) images from low-resolution (LR) inputs. Approaches are generally categorized into
multi-image super-resolution (MISR) and single-image super-resolution (SISR). MISR exploits multiple LR
observations of the same scene for fusion and reconstruction, but this requires well-aligned images that are
often unavailable in satellite imaging. In contrast, SISR aims to recover HR content from a single LR input and
has therefore become the dominant focus in remote sensing applications [6].

The most basic SISR approaches rely on interpolation techniques, such as nearest-neighbor, bilinear,
bicubic, spline, and Lanczos methods [7]. These methods are computationally efficient but operate solely on
pixel intensities without considering image semantics. Consequently, they often produce blurred textures,
ringing artifacts, and poorly defined edges.

A breakthrough came with deep learning-based methods. Dong et al. [8] introduced SRCNN (Super-
Resolution Convolutional Neural Network), the first end-to-end trainable CNN for image SR, which
significantly outperformed classical interpolation. Building on this, Ledig et al. [1] developed SRGAN,
introducing adversarial and perceptual losses to emphasize natural textures over pixel similarity. Lim et al.
[2] later proposed EDSR (Enhanced Deep Residual Networks), simplifying residual structures and achieving
state-of-the-art performance on standard benchmarks.

Further advancements were demonstrated by RCA-GAN by Cai et al. [9], which introduced a Residual
Channel Attention Block within a GAN structure, enabling the model to adaptively emphasize critical high-
frequency features and generate more natural textures and finer details. Recent studies, including Asril et al.
[10], have applied ESRGAN experimentally, confirming its potential in practical settings.

In the remote sensing domain, GAN-based approaches have demonstrated particular promise.
Lavreniuk et al. [11] applied GANSs for satellite data super-resolution, showing improvements in feature
reconstruction. Similarly, Jiang et al. [3] introduced edge-enhanced GANSs that effectively preserved structural
elements such as roads and parcel boundaries. More broadly, reviews such as Xu et al. [12] highlight the
growing role of deep learning-based SR in Earth observation, with demonstrated benefits for land-use
monitoring, urban mapping, and environmental analysis.

Despite these advances, challenges remain regarding model generalization across different satellite
sensors, spectral ranges, and acquisition conditions. Many SR models are trained on natural image datasets
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and applied in fields such as medicine [13] and agriculture [14], which differ significantly from satellite
imagery in terms of structure and noise characteristics. This motivates the present study, which evaluates
ESRGAN on a dedicated satellite dataset and benchmarks it against classical interpolation, with the aim of
improving both perceptual quality and analytical value in operational applications.

3. Materials and Methods

3.1 Materials

The dataset used in this study is the 4x Satellite Image Super Resolution dataset [15], which consists of paired
high resolution (HR) and low resolution (LR) satellite images specifically designed for 4x super-resolution
tasks. The HR images have a spatial resolution of 0.5 meters per pixel, serving as the ground truth, while the
LR images have a resolution of 2 meters per pixel, corresponding to the input data for upscaling. All image
pairs are geographically aligned, ensuring pixel-to-pixel correspondence between HR and LR images. This
dataset provides a suitable benchmark for evaluating the proposed super resolution method due to its high-
quality alignment and clearly defined resolution scaling.

3.2 Methods

This study employs the Enhanced Super Resolution Generative Adversarial Network (ESRGAN) as the
primary method for generating high-resolution satellite images from low resolution inputs. ESRGAN is a
deep learning-based approach that enhances image details, enabling the reconstruction of sharper textures
and more realistic structures [16]. Fig. 1. illustrates the block diagram of the process, from the low resolution
input to the high resolution output.

Low High
Resolution ESRGAN Resolution
Image Image

Fig. 1 Workflow of the super resolution experiment using ESRGAN

The Enhanced Super Resolution Generative Adversarial Network (ESRGAN) is an advancement over
SRGAN aimed at narrowing the gap between generated super-resolved images and the ground truth in terms
of sharpness and texture detail. The improvements are made in three main areas. First, the generator
architecture replaces the SRGAN's basic block with a Residual-in-Residual Dense Block (RRDB), which offers
higher capacity and training stability, removes Batch Normalization (BN) to reduce artifacts and improve
generalization, and applies residual scaling with smaller weight initialization to enable stable training of very
deep networks. Second, the discriminator is enhanced by adopting the Relativistic average GAN (RaGAN)
via the Relativistic average Discriminator (RaD), which judges image realism in a relative sense rather than
absolute, helping the generator to produce more realistic textures. Third, the perceptual loss is improved by
using VGG features before activation instead of after, which has been shown to yield sharper edges and more
visually pleasing results compared to the original SRGAN approach [17].

In the generator, RRDB integrates multi-level residual learning with dense connections, leveraging the
benefits of deeper residual structures to enhance feature representation. Removing BN not only reduces
computational complexity but also prevents artifacts that tend to occur in deep networks under the GAN
framework. On the discriminator side, RaGAN allows the model to benefit from gradients derived from both
real and generated data simultaneously, improving the learning of texture details and edge sharpness [18].
Additionally, the pre-activation-based perceptual loss addresses the shortcomings of conventional post-
activation loss, which often results in highly sparse activations and inconsistent brightness compared to the
ground truth. Through this combination of architectural enhancements, loss function refinements, and

el

"
o

\%

Penerbit ITDel




Journal of Intelligent Computing, Systems, and Applications Vol. 1 No. 1 (2025) p. 39-47 42

training strategies, ESRGAN consistently outperforms state-of-the-art methods in both image sharpness and
fine visual detail.

As a classical baseline, Lanczosb interpolation is used for comparison with the proposed ESRGAN
method. Lanczos interpolation is a resampling method used to increase or decrease image resolution while
preserving detail and clarity. It employs the Lanczos kernel, a windowed sinc function designed to produce
smooth and consistent interpolations. Applied systematically across both image rows and columns, Lanczos
interpolation enables accurate upscaling and downscaling with high smoothness, making it a valuable
technique for improving the quality of resampled images [19 —20].

3.3 Evaluation Metrics

To objectively assess the performance of the super-resolution method, a quantitative evaluation metric was
employed to compare the reconstructed images with the corresponding high-resolution ground truth. In this
study, the Peak Signal-to-Noise Ratio (PSNR) was used, as it is widely adopted in image quality assessment
for super-resolution tasks. PSNR measures the fidelity of the reconstructed image by quantifying the ratio
between the maximum possible signal power and the noise introduced during reconstruction. A higher PSNR
value indicates better reconstruction quality [21 — 22]. The PSNR, measured in decibels (dB), can be calculated
using the following formula:

AZ
Lo, (Y() - 7))’

PSNR = 10Log;, )

For an 8-bit image, A is typically 255 and represents the maximum possible pixel value in the image,
determined by the number of bits used in the pixel representation. n denotes the total number of pixels in the
image, Y() is the value of the i-th pixel in the ground truth image, and Y(i) is the value of the i-th pixel in the
reconstructed image.

On the other hand, in contrast to PSNR which operates on absolute pixel-wise differences, the Structural
Similarity Index Measure (SSIM) is designed to model the human visual system’s sensitivity to structural
information in images. SSIM is a widely used perceptual metric for assessing image quality by measuring the
degree of similarity between two images. Its value ranges from 0 to 1, with higher values indicating lower
distortion. An SSIM score of 1 indicates that the two images are perfectly identical [23].
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SSIM(x,y) = ()

Mathematically, the Structural Similarity Index Measure (SSIM) between two image patches x and y is
defined as shown in Eq. (2). In this formulation, u, and u, denote the mean intensity values of images x and
y, representing luminance. The terms 0 and o5 correspond to the variances of x and y, which capture contrast
information, while g, represents the covariance between the two images, reflecting their structural similarity.
To guarantee numerical stability, particularly when the denominators are close to zero, two small constants,
¢; and ¢, are incorporated into the equation.

4. Results and Discussion

This section presents and discusses the experimental results obtained from applying the super-resolution
method to the satellite image dataset. The quantitative evaluation uses the Peak Signal-to-Noise Ratio (PSNR)
to measure the fidelity of the reconstructed images against the high-resolution ground truth. The results are
analyzed to identify performance trends across different test images. In this research, we used ten different
images, and the PSNR results are presented in Table 1. For comparison, Lanczos5 interpolation is also
evaluated as a classical baseline to provide a quantitative reference against the ESRGAN results.
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Table 1 PSNR Evaluation for 10 Images in Super-Resolution

Image Number PSNR (dB)
ESRGAN LANCZOS5
1 25.90 24.79
2 26.30 25.59
3 26.64 26.38
4 25.63 24.74
5 27.37 26.18
6 25.16 24.03
7 25.62 25.19
8 25.46 24.93
9 26.49 25.70
10 25.19 24.26

Based on Table 1, the ESRGAN method consistently outperforms the Lanczos5 method across all test
images. The average PSNR value for ESRGAN is 25.976 dB, while Lanczos5 achieves an average of 25.179 dB.
This indicates that the reconstructed images produced by ESRGAN are closer to the high-resolution ground
truth. The largest improvement is observed in image number 5, with a difference of 1.19 dB, while the smallest
improvement is found in image number 3, with a difference of only 0.26 dB. These quantitative results
demonstrate that ESRGAN excels in preserving detail and sharpness in satellite images compared to classical
resampling methods such as Lanczos5. This consistent improvement shows that deep learning-based
approaches can deliver better results than conventional interpolation.

In addition to PSNR, the Structural Similarity Index Measure (SSIM) was employed to further assess the
perceptual quality of the reconstructed images. Table 2 summarizes the SSIM values obtained for ESRGAN
and Lanczos5 across ten test images. Similar to the PSNR results, ESRGAN consistently achieves higher SSIM
scores than Lanczos5. The average SSIM for ESRGAN is 0.750, compared to 0.698 for Lanczos5, indicating that
ESRGAN is more effective in preserving structural information and visual similarity to the ground truth.
These results reinforce the conclusion that ESRGAN not only reduces distortion but also maintains perceptual
fidelity better than the classical interpolation method.

Table 2 SSIM Evaluation for 10 Images in Super-Resolution

Image Number SSIM
ESRGAN LANCZOS5
1 0.762 0.699
2 0.760 0.714
3 0.718 0.680
4 0.740 0.681
5 0.767 0.717
6 0.772 0.696
7 0.726 0.690
8 0.730 0.685
9 0.759 0.714
10 0.765 0.701
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The visual results in this section present a qualitative comparison between the low-resolution inputs and
the corresponding super resolution outputs produced by ESRGAN. From the ten test images used in this
study, three representative examples, namely images 1, 3, and 5, are selected for display. These examples
highlight the visual improvements achieved by the super-resolution method, particularly in enhancing fine
details and restoring sharper textures in satellite imagery.

The images in Fig. 2, Fig. 3, and Fig. 4 show a qualitative comparison between the low-resolution inputs,
the super-resolved outputs produced by ESRGAN, and the results obtained using Lanczos5 interpolation.
Compared to the low-resolution images, both methods improve clarity, but ESRGAN produces sharper edges,
clearer building outlines, and more distinguishable fine details. In contrast, Lanczos5 provides smoother but
less detailed reconstructions, highlighting the advantage of deep learning-based approaches over classical
interpolation. These visual enhancements demonstrate the method’s effectiveness of reconstructing high-
frequency details that are lost in low resolution images and align with the quantitative PSNR results, further
confirming the effectiveness of ESRGAN in enhancing satellite imagery.

EY) (b) (©

Fig. 3 Image 3 (a) Low resolution; (b) Lanczos5; (c) Super resolution
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Fig. 4 Image 5 (a) Low resolution; (b) Lanczos5; (c) Super resolution

5. Conclusion

This study demonstrated the effectiveness of the Enhanced Super Resolution Generative Adversarial Network
(ESRGAN) in improving the quality of low-resolution satellite imagery. Quantitative evaluation using Peak
Signal-to-Noise Ratio (PSNR) showed that ESRGAN consistently outperformed the classical Lanczos5
interpolation method across all test images. The largest PSNR gain of 1.19 dB was observed for image 5, while
the smallest gain of 0.26 dB occurred for image 3. Similarly, ESRGAN achieved higher Structural Similarity
Index Measure (SSIM) scores, with the most significant improvement of 0.076 observed for image 6 and the
smallest improvement of 0.036 for image 7. Qualitative analysis further confirmed these findings, where
ESRGAN outputs exhibited sharper edges, clearer object boundaries, and more distinguishable fine details in
urban and natural features. These results indicate that deep learning—based super resolution methods, such
as ESRGAN, are highly effective in reconstructing high-frequency details and enhancing the visual quality of
satellite imagery compared to conventional interpolation techniques.

For future work, several directions can be explored to further strengthen the evaluation of super-resolution
methods. First, a closer inspection of specific features such as roads, rooftops, and vegetation could provide
more detailed insights into the visual improvements achieved by ESRGAN. Second, in addition to PSNR and
SSIM, the Learned Perceptual Image Patch Similarity (LPIPS) metric may be incorporated to better capture
perceptual quality from a human-visual perspective. Finally, further comparisons with other deep learning-
based super-resolution architectures, such as RCAN, SwinlR, or EDSR, could provide a more comprehensive
benchmark.
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