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This study investigates the integration of the YOLOv10 object 

detection framework with the BoostTrack tracking algorithm to 

enhance drone-based multi-object tracking (MOT). Leveraging the 

lightweight YOLOv10n model, the proposed system was evaluated 

against larger variants (YOLOv10s and YOLOv10m) across widely 

recognized MOT metrics, including IDF1, MOTA, precision, recall, 

and identity switches. Results show a clear trade-off between 

detection and tracking. While YOLOv10s/m obtain higher 

precision/recall on pure detection, the YOLOv10n + BoostTrack 

pipeline achieves higher IDF1, fewer identity switches, and 

competitive MOTA under real-time constraints. These findings 

indicate that a lightweight detector can deliver stronger identity 

stability for drone MOT when latency is critical, supporting 

practical, real-time surveillance deployments. 
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1. Introduction 

The rapid advancement of computer vision has led to significant improvements in real-time object detection 

and tracking. Among the most widely adopted frameworks is the "You Only Look Once" (YOLO) family of 

models, which is renowned for its speed–accuracy trade-off and suitability for deployment in resource-

constrained environments. The latest iterations, YOLOv10 variants, introduce architectural refinements that 

further enhance detection performance across different scales (Hussain & Khanam, 2024; A. Wang et al., 2024). 

In parallel, Multi-Object Tracking (MOT) has emerged as a crucial task for applications such as surveillance, 

(Abba et al., 2024; Gad et al., 2022), autonomous driving (Chiu et al., 2021; Lin et al., 2024; X. Wang et al., 2024), 

and drone-based monitoring (P. Wang et al., 2024; Yuan, Wu, Zhao, Chen, et al., 2024; Yuan, Wu, Zhao, Liu, 

et al., 2024). Unlike object detection alone, MOT requires maintaining consistent identities of objects across 

frames, which remains a challenging task in scenarios with frequent occlusions, varying object sizes, and 

dynamic backgrounds (Du et al., 2024). To address this, modern trackers integrate both detection and re-

identification (ReID) modules, with ReID playing a critical role in preserving consistent object identities across 

temporal sequences (Gao et al., n.d.; Oliveira et al., 2021). 
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Drone-based video surveillance introduces additional challenges to MOT. Videos captured from aerial 

perspectives often contain small-scale targets, reduced resolution, and varying lighting conditions. 

Furthermore, the altitude and movement of drones result in frequent viewpoint changes, making it difficult 

for trackers to maintain consistent object trajectories (Mirzaei et al., 2023; Taufiqurrahman et al., 2024; Q. Wang 

et al., 2025). These constraints necessitate the evaluation of detection–tracking pipelines under aerial 

surveillance scenarios. 

This research focuses on the comparative evaluation of three YOLOv10 models—YOLOv10n, YOLOv10s, and 

YOLOv10m—when integrated with the BoostTrack tracking framework and OSNet-based ReID modules. The 

evaluation involves a two-step strategy: first, analyzing detection outputs through CSV summaries; second, 

assessing tracking consistency using the MOT format. A pseudo ground-truth generated from the smallest 

model (YOLOv10n) serves as a reference to measure tracking accuracy across the models. 

The significance of this study lies in providing a structured comparison of YOLOv10 variants for aerial MOT 

tasks. By systematically evaluating their detection sensitivity, tracking stability, and identity preservation, this 

research aims to offer practical insights for deploying MOT systems in real-world drone surveillance 

applications. 

Despite recent advancements in object detection and multi-object tracking, several challenges remain 

unresolved when applying these methods to drone-based video surveillance. First, aerial imagery typically 

results in small object scales, frequent occlusions, and unstable camera motion, which reduce the accuracy of 

detection and complicate identity preservation. Second, while YOLO-based detectors are highly efficient, the 

trade-off between speed and accuracy across different model sizes (e.g., YOLOv10n, YOLOv10s, YOLOv10m) 

is not fully understood in the context of aerial multi-object tracking. 

Moreover, existing MOT frameworks often face difficulties in maintaining consistent identity assignments 

across frames, especially in low-resolution or long-range scenarios typical of drone footage. Although 

BoostTrack integrates re-identification to address identity switches, its performance when coupled with 

various YOLOv10 detectors in aerial contexts has not been systematically evaluated. 

Finally, there is a lack of standardized evaluation pipelines tailored to drone surveillance, where pseudo 

ground-truth or weakly supervised references are often required due to the absence of manual annotations. 

Without such evaluations, it remains unclear which combination of detector and tracker achieves the most 

reliable performance in drone-based monitoring tasks. 

1.1 Research Objectives 

The primary objective of this study is to evaluate the performance of different YOLOv10 models (YOLOv10n, 

YOLOv10s, and YOLOv10m) when integrated with the BoostTrack multi-object tracking framework in drone-

based surveillance videos. To achieve this, the study is structured around the following specific objectives: 

 To implement a unified evaluation pipeline that generates detection, tracking, and pseudo ground-

truth data from drone-captured video sequences. 

 To analyze and compare the accuracy, robustness, and identity consistency of different YOLOv10 

model variants when combined with BoostTrack. 

 To assess the trade-offs between detection sensitivity, computational efficiency, and tracking 

reliability across the tested configurations. 

 To produce quantitative and visual evaluation metrics, including CSV-based tracking summaries and 

MOT-style benchmarks, enabling systematic comparisons between models. 

 To identify the most effective model–tracker configuration for long-range aerial human detection and 

tracking tasks. 

1.2 Significance of the Study 

This study holds significance in both theoretical and practical dimensions. From a research perspective, it 

contributes to the growing body of literature on multi-object tracking by systematically analyzing the 

integration of modern YOLOv10 detectors with BoostTrack in a challenging aerial surveillance context. The 
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comparative evaluation highlights the strengths and limitations of lightweight versus medium-scale 

detectors, thus informing future model selection and adaptation strategies. 

From an applied perspective, the findings of this research are relevant for real-world scenarios such as crowd 

monitoring, public safety, disaster response, and traffic management using drones. By identifying optimal 

detector–tracker configurations, the study supports the development of more reliable and efficient drone-

based surveillance systems, especially in environments where computational resources are limited and 

annotation data is scarce. 

2. Literature Review 

2.1 Evolution of YOLO Architectures 

The You Only Look Once (YOLO) family of object detection models has undergone significant evolution since 

its introduction in 2016 (Ali & Zhang, 2024). The original YOLO proposed a novel paradigm by framing object 

detection as a single regression problem, directly predicting bounding boxes and class probabilities from 

images in real time. This innovation offered unprecedented speed, albeit with trade-offs in localization 

accuracy compared to region-based approaches such as R-CNN (Alif & Hussain, 2024). 

YOLOv2 (YOLO9000) improved upon this foundation by integrating batch normalization, anchor boxes, and 

multi-scale training, thereby enhancing both accuracy and robustness across object categories. YOLOv3 

further advanced the architecture through the use of residual blocks, multi-scale predictions, and logistic 

regression for objectness scores, solidifying its role as a widely adopted detector in both academic and 

industrial applications (Apostolidis & Papakostas, 2025). 

Subsequent versions, such as YOLOv4 and YOLOv5, introduced additional optimization strategies including 

cross-stage partial (CSP) connections, path aggregation networks (PANet), and advancements in data 

augmentation (e.g., Mosaic augmentation). These iterations achieved a balance between speed and accuracy 

suitable for deployment on resource-constrained devices (Ali & Zhang, 2024; Dadboud et al., 2021). 

YOLOv7 marked a milestone by unifying various training and architectural strategies into a consolidated 

framework, achieving state-of-the-art performance on the COCO benchmark (Ali & Zhang, 2024). Most 

recently, YOLOv8 and YOLOv9 extended these improvements by offering enhanced backbone networks, 

decoupled heads, and efficient anchor-free detection mechanisms (Liu et al., 2024). 

YOLOv10, the focus of this study, builds on this lineage by prioritizing computational efficiency while 

maintaining competitive detection accuracy. Designed with optimized backbones and lightweight detection 

heads, YOLOv10 provides a scalable family of models ranging from nano (n) to extra-large (x), catering to 

diverse application scenarios including real-time aerial surveillance. 

The YOLO (You Only Look Once) family of object detectors has undergone continuous evolution from its 

initial release to the latest versions. YOLOv1 introduced the real-time detection paradigm by framing object 

detection as a regression problem, whereas subsequent versions (YOLOv2–YOLOv5) improved accuracy, 

robustness, and architectural efficiency through techniques such as anchor boxes, feature pyramid networks, 

and optimized training strategies. YOLOv6, YOLOv7, and YOLOv8 further pushed the balance between 

speed and accuracy, offering lightweight yet highly performant models (Terven & Cordova-Esparza, 2023). 

Recent architectures, including YOLOv9 and YOLOv10, have integrated advanced strategies such as dual-

label assignments and NMS-free training, aiming to achieve higher accuracy while maintaining low latency. 

Figure 1 demonstrates the performance comparison of YOLOv10 with previous state-of-the-art models across 

COCO benchmarks, highlighting YOLOv10’s superior trade-off between accuracy, latency, and model size 

(A. Wang et al., 2024). 
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Fig 1. COCO Average Precision (AP) comparison between YOLOv10 and prior architectures with respect to 

latency (left) and number of parameters (right). YOLOv10 consistently achieves higher AP with lower 

computational cost. 

2.2 Multi-Object Tracking (MOT) Fundamentals 

Multi-Object Tracking (MOT) is a critical task in computer vision that aims to detect and track multiple objects 

simultaneously across consecutive video frames. Unlike single-object tracking, MOT must not only localize 

objects but also maintain their unique identities throughout the sequence, even under challenging conditions 

such as occlusion, motion blur, and abrupt changes in object appearance. 

The MOT problem is typically decomposed into two main stages: detection and data association. In the 

detection stage, object detectors such as YOLO, Faster R-CNN, or Transformer-based models are employed 

to localize objects frame by frame (Kamboj, 2024). The data association stage is then responsible for linking 

these detections over time to ensure that each object retains a consistent trajectory and identity. Traditional 

methods relied on motion models (e.g., Kalman filters) and hand-crafted appearance features, whereas 

modern approaches increasingly leverage deep learning-based appearance embeddings and optimization 

strategies to improve robustness (Karim et al., 2025; Kaseris et al., 2024). 

Two principal paradigms exist in MOT research: tracking-by-detection and joint detection and tracking. The 

tracking-by-detection framework, which dominates the field, uses an external object detector followed by data 

association algorithms, while joint approaches integrate detection and tracking into a unified architecture, 

thereby reducing error propagation (Kaseris et al., 2024). 

The performance of MOT systems is commonly evaluated using benchmarks such as MOT16, MOT17, and 

MOT20, with metrics including Multiple Object Tracking Accuracy (MOTA), ID F1-score (IDF1), and Higher 

Order Tracking Accuracy (HOTA). These metrics provide a comprehensive view of both detection precision 

and identity preservation (Hassan et al., 2024; Kaseris et al., 2024). 

Recent advances in MOT research have focused on improving scalability and efficiency by integrating 

lightweight detectors with sophisticated association mechanisms. As real-time applications such as 

autonomous driving, surveillance, and human–computer interaction become more prevalent, MOT has 

emerged as a vital research area that bridges object detection with long-term spatio-temporal reasoning (Li et 

al., 2024; Meneses et al., 2020; Saleh et al., 2021; X. Wang et al., 2023). 

2.2.1 Challenges in MOT 

Despite substantial progress, Multi-Object Tracking (MOT) continues to encounter persistent challenges that 

limit its effectiveness in real-world applications. One of the most critical difficulties arises from occlusion and 

crowded environments, where overlapping or partially hidden objects often result in missed detections and 

identity switches. Appearance variations further complicate the task, as objects frequently change in pose, 

illumination, viewpoint, or undergo motion blur, making it difficult to maintain consistent identity 
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representations across frames. These challenges are exacerbated by detection errors, since MOT largely relies 

on the tracking-by-detection paradigm in which false positives, false negatives, or poorly localized bounding 

boxes directly propagate into the association process, leading to fragmented trajectories and mismatched 

identities. 

In addition to accuracy concerns, real-time processing requirements impose further constraints on MOT 

systems, especially in safety-critical domains such as autonomous driving and intelligent surveillance. The 

need to balance high accuracy with computational efficiency remains unresolved, as more sophisticated 

association mechanisms and deep feature representations often introduce significant latency. Another key 

challenge lies in preserving object identities over extended video sequences. Temporary disappearances 

caused by occlusion or objects moving out of view frequently disrupt identity continuity, and reliable re-

identification mechanisms are still limited, particularly in large-scale tracking scenarios. Moreover, MOT 

models frequently demonstrate strong performance on standardized benchmarks yet fail to generalize 

effectively to unseen domains, where object categories, scene densities, and motion patterns differ 

considerably. This issue of domain generalization underscores the need for more adaptable and robust 

tracking frameworks (Gad et al., 2022). 

In sum, MOT remains an open research problem due to the interplay of occlusion, appearance variation, 

detection quality, computational constraints, long-term identity preservation, and domain transferability. 

Addressing these issues is essential for building scalable and reliable systems capable of operating in complex 

real-world environments. 

2.2.2 Standard MOT Metrics 

The evaluation of Multi-Object Tracking (MOT) performance relies on standardized metrics that capture both 

detection quality and association accuracy across temporal sequences. One of the most widely used measures 

is Multiple Object Tracking Accuracy (MOTA), which accounts for false positives, false negatives, and identity 

switches. MOTA provides an aggregate score that reflects the overall ability of a system to correctly detect 

and associate objects, though it does not directly consider localization precision. Complementing this, 

Multiple Object Tracking Precision (MOTP) evaluates the spatial alignment between predicted and ground-

truth bounding boxes, thereby quantifying how accurately the tracker localizes objects in each frame (Hassan 

et al., 2024). 

Recent benchmarks have introduced more identity-sensitive metrics to address the limitations of MOTA and 

MOTP. Identification F1 score (IDF1) has gained prominence as it measures the ratio of correctly identified 

detections over the average number of ground-truth and predicted detections, directly reflecting the model’s 

ability to preserve consistent identities (Du et al., 2024). Similarly, ID Precision (IDP) and ID Recall (IDR) 

provide a more granular view of identity preservation by distinguishing between correct and incorrect 

associations. These metrics are especially important in crowded or long-duration tracking scenarios, where 

maintaining consistent identities is often more critical than mere detection accuracy. 

Another increasingly relevant metric is Higher Order Tracking Accuracy (HOTA), which integrates both 

detection and association components into a single balanced framework. Unlike MOTA, HOTA decomposes 

performance into detection accuracy, association accuracy, and localization accuracy, offering a more holistic 

and interpretable measure of tracking quality. This metric has gained traction in recent MOT challenges 

because it better captures the trade-off between detection reliability and identity consistency. 

Together, these metrics form the foundation for assessing and comparing MOT systems. They not only 

highlight different aspects of performance but also reveal the strengths and weaknesses of tracking algorithms 

under diverse conditions. As MOT continues to evolve, the adoption of balanced and identity-aware 

evaluation metrics has become essential for driving progress toward more robust and reliable tracking 

solutions. 

2.3 Role of Re-Identification (ReID) in Tracking 

Re-Identification (ReID) plays a pivotal role in enhancing the robustness and continuity of Multi-Object 

Tracking (MOT) systems (Lusardi et al., 2021). While traditional trackers rely primarily on spatial and 
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temporal cues such as bounding box overlap and motion consistency, these features often fail in scenarios 

involving frequent occlusions, abrupt camera movements, or dense crowds. ReID addresses these limitations 

by incorporating appearance-based representations, enabling the tracker to maintain consistent identities 

across challenging conditions. 

At its core, ReID involves extracting discriminative visual embeddings from detected objects, typically using 

deep convolutional neural networks or transformer-based architectures (He et al., 2021; Sarker et al., 2024) 

These embeddings capture unique characteristics such as clothing color, texture, and shape, which remain 

relatively stable across frames even when spatial cues are unreliable. By comparing embeddings across 

detections, the tracker can effectively re-associate individuals after occlusion or reappearance, thus reducing 

identity switches and improving long-term tracking stability. 

The integration of ReID into MOT pipelines has been shown to significantly improve identity-sensitive metrics 

such as IDF1, ID Precision, and ID Recall (Rashidunnabi et al., 2025). In practice, ReID modules operate 

alongside detection and motion models within tracking-by-detection frameworks, serving as an additional 

source of information for data association. Modern trackers, such as those combining appearance features 

with motion prediction, illustrate how ReID enables more accurate matching across frames and enhances 

overall system resilience. 

Beyond its role in short-term association, ReID is particularly critical in multi-camera tracking, where objects 

frequently leave one camera’s field of view and re-enter another. In such contexts, appearance-based ReID 

becomes the primary mechanism for linking trajectories across non-overlapping fields, thereby extending 

MOT capabilities into broader surveillance and monitoring systems. 

In sum, ReID contributes not only to reducing fragmentation and identity errors but also to enabling scalable 

tracking across complex environments. Its integration represents a key advancement in bridging the gap 

between detection-driven tracking and identity-preserving long-term association, making it an indispensable 

component of contemporary MOT research. 

 

Fig 2. Illustration of a multi-object tracking pipeline integrating object detection, motion modeling, and Re-

Identification (ReID) features. ReID embeddings complement motion-based cues to enhance data 

association and maintain consistent object identities across frames. 
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2.4 Drone-Based Surveillance Studies 

The rapid adoption of drones as aerial sensing platforms has significantly expanded the scope of surveillance 

applications, ranging from crowd monitoring and traffic analysis to disaster management and border security. 

Unlike fixed surveillance cameras, drones provide mobility, flexible viewpoints, and the ability to cover 

expansive areas, making them especially advantageous for dynamic environments. In recent years, the 

integration of computer vision algorithms, particularly those based on deep learning, has enhanced the utility 

of drones in detecting, tracking, and analyzing human and vehicular activities from aerial perspectives 

(Pathirannahalage et al., 2025). 

Studies have demonstrated that drone-based surveillance introduces unique challenges distinct from ground-

based monitoring. For instance, the increased altitude and oblique camera angles often result in smaller object 

sizes and motion blur, which complicate object detection and tracking tasks. Moreover, environmental 

conditions such as wind, lighting variability, and occlusions caused by buildings or vegetation further 

degrade performance (Ahmad et al., 2025). Despite these limitations, research has shown that leveraging 

advanced object detection models such as the YOLO family, coupled with tracking frameworks like MOT 

algorithms, can mitigate these issues and achieve reliable performance. 

Several works have highlighted the importance of Re-Identification (ReID) in drone surveillance contexts, as 

individuals often leave and re-enter the field of view due to drone motion or limited camera coverage. 

Embedding ReID modules in tracking systems has been shown to significantly improve identity preservation, 

particularly in crowded scenes where occlusion is frequent. Furthermore, emerging approaches that combine 

multi-scale detection strategies, motion compensation, and adaptive resolution enhancement are increasingly 

being applied to drone-based tracking tasks to address challenges related to scale variation and reduced 

visibility (Khatab & Shalash, 2025; Pal et al., 2024). 

Overall, drone-based surveillance represents a rapidly evolving research domain at the intersection of 

computer vision, autonomous systems, and security studies. Its potential to provide real-time situational 

awareness across diverse operational environments underscores the necessity for robust and efficient 

detection and tracking pipelines. These studies form a critical backdrop for the present research, which 

evaluates YOLOv10-based detection models integrated with MOT frameworks for drone surveillance at mid-

range altitudes. 

3. Methodology 

This study adopts a multi-stage methodology that integrates state-of-the-art object detection and multi-object 

tracking frameworks to enable robust drone-based surveillance. The approach begins with the selection of 

pretrained YOLOv10 variants as the backbone detector, ensuring a comprehensive evaluation across model 

scales. Multi-scale inference is applied during detection to enhance robustness against variations in object size 

and distance, which are common in aerial footage. The detection results are then passed into a ReID-

augmented tracking framework (BoostTrack), where appearance-based features from OSNet are leveraged to 

maintain consistent object identities across frames. 

Finally, the outputs are systematically logged into multiple formats, including CSV for statistical analysis and 

MOTChallenge-compatible files for standardized benchmarking. To enable fair comparison, pseudo ground-

truth labels are generated from the first model run, which subsequently serve as a reference for evaluating 

other model variants. 

The overall workflow is illustrated in the following pipeline: 
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Fig 3. Overall research methodology pipeline for drone-based multi-object tracking, illustrating sequential 

stages from input video acquisition, YOLOv10 multi-scale detection, non-maximum suppression, 

BoostTrack tracking with ReID, to structured outputs (annotated video, CSV logs, MOT results, and 

ground truth generation). 

3.1 Model Selection and Pretrained Weights 

This study adopts the YOLOv10 family of object detection models due to their proven balance of accuracy, 

computational efficiency, and adaptability to real-time surveillance scenarios (A. Wang et al., 2024). Among 

the available variants, this work employs YOLOv10n, YOLOv10s, and YOLOv10m, representing lightweight, 

small, and medium-scale configurations. This tiered selection allows for a systematic evaluation of the trade-

offs between speed and detection performance in drone-based surveillance applications. 

All YOLOv10 models were initialized with pretrained weights on the COCO dataset, a large-scale benchmark 

widely used in object detection research. Leveraging pretrained weights ensures faster convergence during 

fine-tuning and provides strong generalization capabilities, particularly for detecting the “person” class, 

which is central to the objectives of this research. By incorporating transfer learning, the models start from 

robust feature representations rather than being trained from scratch, which is particularly beneficial given 

the specialized nature of aerial video data. 

For identity preservation across consecutive frames, the tracking pipeline integrates a Re-Identification (ReID) 

module using the OSNet_x0_5 model, trained on the MSMT17 dataset. OSNet_x0_5 was chosen as the optimal 

candidate due to its balance of efficiency and discriminative power, producing compact yet robust appearance 

embeddings. These embeddings are crucial for associating detected individuals consistently across frames, 

especially under occlusion or partial visibility. The combination of YOLOv10 for detection and OSNet_x0_5 

for appearance-based re-identification establishes a reliable and scalable foundation for multi-object tracking 

in drone surveillance contexts. 

3.2 Tracking Framework Integration 

The integration of detection and appearance-based re-identification was operationalized through the 

BoostTrack framework, which provides a modular and extensible design for multi-object tracking. In this 
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pipeline, YOLOv10 serves as the primary detector, generating bounding box predictions for each frame. These 

detections are filtered using Non-Maximum Suppression (NMS) to remove redundant overlaps, thereby 

ensuring that only the most confident and spatially distinct candidates are passed to the tracker. 

BoostTrack extends these detections by incorporating motion modeling and appearance embedding 

association. The appearance embeddings are extracted from the OSNet_x0_5 network, enabling consistent 

identity assignment across frames even under challenging conditions such as occlusion, abrupt motion, or 

scale variation. The framework dynamically associates detections with active tracks, while unassigned 

detections initialize new tracklets and tracks without updates are terminated after a defined period of 

inactivity. 

This integration provides a synergistic balance between spatial detection accuracy and temporal consistency, 

leveraging the real-time efficiency of YOLOv10 with the discriminative re-identification capabilities of OSNet. 

The modular structure of BoostTrack further allows for straightforward adaptation to different datasets and 

surveillance scenarios, ensuring both scalability and generalizability of the proposed system. 

 

Fig 4. Flowchart of the proposed tracking framework integrating YOLOv10 detection with BoostTrack and 

OSNet_x0_5 for re-identification. 

3.3 Experimental Setup 

The experimental setup was designed to rigorously evaluate the effectiveness of the proposed multi-object 

tracking framework in drone-based surveillance contexts. All experiments were conducted using real-world 

aerial video data, ensuring that the evaluation reflects the operational challenges of scale variation, dynamic 

backgrounds, and frequent occlusions inherent in drone footage. The framework was implemented in Python 

with PyTorch as the primary deep learning backend, leveraging the YOLOv10 models for detection and the 

OSNet_x0_5 network for appearance-based re-identification. BoostTrack served as the integration layer, 

facilitating the association of detections across frames. 

The experiments were executed on a computing environment equipped with GPU acceleration to ensure real-

time inference capability. Evaluation followed standard Multi-Object Tracking (MOT) metrics, including 

Multiple Object Tracking Accuracy (MOTA), Multiple Object Tracking Precision (MOTP), and Identity F1-

score (IDF1). This setup allowed for a comprehensive analysis of both spatial accuracy and temporal 

consistency, thereby validating the robustness and generalizability of the proposed approach. 

3.3.1 Preprocessing and Parameters 

Prior to the tracking process, several preprocessing steps and parameter configurations were applied to ensure 

consistency and optimal model performance. The input video was standardized to maintain its original 

resolution while enabling real-time frame extraction. Each frame was processed sequentially, with detection 

and tracking pipelines applied without temporal skipping, thereby preserving the continuity of object 

trajectories. 

For detection, multi-scale inference was employed with scales of 1.0× and 1.5× to improve the robustness of 

person detection under varying drone altitudes and object sizes. The detection confidence threshold was set 

to 0.01, ensuring that even low-confidence detections were considered, which is essential for recall in crowded 
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surveillance environments. Non-Maximum Suppression (NMS) was performed with an Intersection over 

Union (IoU) threshold of 0.6, consolidating redundant bounding boxes while retaining true positives. To 

further guarantee scalability, the maximum number of detections per frame was capped at 10,000. 

In terms of object categories, only the person class was considered, as the study focused on human-centered 

drone surveillance. For the re-identification component, the OSNet_x0_5 model was used exclusively, offering 

a balance between computational efficiency and discriminative power in distinguishing individual identities. 

The BoostTrack framework was parameterized with default settings, adjusted only where necessary to align 

with the characteristics of drone-based footage. 

Together, these preprocessing and parameter choices established a standardized experimental foundation, 

ensuring reproducibility and comparability across different YOLOv10 variants. 

3.4 Evaluation Strategy 

The evaluation of the proposed tracking framework was designed to provide both fine-grained detection 

insights and holistic performance benchmarking. To achieve this, we adopted a three-stage strategy: first, 

analyzing raw detections through CSV-based logs; second, assessing multi-object tracking performance using 

standard MOT metrics; and third, constructing pseudo-ground-truth annotations for controlled evaluation. 

3.4.1 CSV-Based Detection Analysis 

The CSV (comma-separated values) output served as the primary medium for analyzing raw detection and 

tracking results across frames. Each row encoded frame indices, object identifiers, bounding box coordinates, 

detection confidence, and temporal information. By processing these logs, we could quantify detection 

density, evaluate the temporal consistency of object IDs, and identify cases of fragmented or missing tracks. 

This format also enabled quick visualization of detection confidence distributions, spatial coverage, and per-

frame variations in the number of tracked individuals, providing an essential baseline before advancing to 

higher-level tracking metrics. 

3.4.2 MOT Metrics Evaluation 

The performance of the system was further quantified using standardized MOT metrics derived from the 

MOTChallenge evaluation protocol. Key metrics included Multiple Object Tracking Accuracy (MOTA), 

which penalizes missed detections, false positives, and identity switches; Multiple Object Tracking Precision 

(MOTP), which measures the alignment quality of bounding boxes; IDF1, which captures the balance 

between identity recall and identity precision; and HOTA, which provides a more holistic assessment of both 

detection and association accuracy. These metrics allowed objective comparison against baseline methods 

while highlighting the strengths and limitations of the integrated YOLOv10 + BoostTrack + OSNet_x0_5 

framework. 

3.4.3 Pseudo-Ground-Truth Definition 

Since the dataset lacked manually annotated ground truth, we generated pseudo-ground-truth (PGT) 

annotations to establish a reference for performance evaluation. These annotations were derived specifically 

from the first evaluated YOLOv10n model, ensuring consistency across experiments. The generated gt.txt file 

contained bounding boxes and object identifiers, formatted according to MOTChallenge standards. Although 

pseudo-ground-truth cannot entirely replace manually curated annotations, it provided a controlled baseline 

for relative performance comparison across different detector scales. This strategy allowed us to evaluate the 

robustness of the framework while acknowledging the limitations of automated annotation. 

4. Results and Discussion 

This section presents the experimental results obtained from integrating YOLOv10-based detection with the 

BoostTrack multi-object tracking framework. The outcomes are analyzed with respect to both detection 

performance and tracking consistency, using CSV-based detection logs, MOT metrics, and pseudo-ground-
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truth comparisons as the primary evaluation tools. By systematically comparing different YOLOv10 model 

scales, we aim to highlight the trade-offs between model size, detection accuracy, and computational 

efficiency. Furthermore, the discussion addresses the strengths and limitations of the proposed framework in 

the context of drone-based surveillance scenarios. The insights gained from this analysis provide a deeper 

understanding of how detector and tracker integration influences multi-object tracking performance in real-

world applications. 

To qualitatively illustrate these differences, Figure 5 presents detection outputs from the same drone video 

frames across the three YOLOv10 variants. As shown, YOLOv10n produces fewer bounding boxes, often 

missing individuals located at the periphery of the scene, whereas YOLOv10s and YOLOv10m detect a larger 

number of persons with more comprehensive coverage. The increase in detections across model scales 

underscores the improved sensitivity of larger architectures to human presence in crowded aerial views. 

 

Fig 5. Example detections from YOLOv10n, YOLOv10s, and YOLOv10m models on identical drone 

surveillance frames. Larger models (s and m) capture more individuals with higher bounding-box 

coverage compared to the lightweight YOLOv10n. 

4.1 CSV-Based Detection Results 

The CSV-based detection logs provide a detailed record of the outputs generated by the YOLOv10 models at 

different scales. Each entry in the CSV corresponds to a detected bounding box, with attributes including 

frame number, unique ID, bounding box coordinates, confidence score, class label, and timestamp. By 

examining the top rows, we can observe how detections are initialized at the beginning of the sequence, while 

the bottom rows highlight the persistence of detections until the end of the sequence. This analysis is useful 

for verifying model consistency, bounding box stability, and the evolution of object tracking across the dataset. 

 

Table 1. Sample detection log entries from YOLOv10s model, showing frame index, object ID, bounding box 

coordinates (x1, y1, x2, y2), confidence score, class label, and timestamp. 

frame id x1 y1 x2 y2 conf cls width height timestamp_ms 

1 1328 78.80 536.29 161.16 609.36 0.795 0 1920 1080 0 

1 1330 194.64 666.20 300.88 756.68 0.755 0 1920 1080 0 

1 1331 431.96 806.33 525.04 879.51 0.755 0 1920 1080 0 
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frame id x1 y1 x2 y2 conf cls width height timestamp_ms 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

1756 2827 0.11 90.00 20.66 105.57 0.639 0 1920 1080 299279 

 

4.1.1 Detection Counts 

The detection counts represent the total number of bounding boxes produced by each YOLOv10 variant across 

the dataset. The results demonstrate substantial variation in detection capacity between model scales. 

Specifically, the YOLOv10n model yielded 25,282 detections, while the YOLOv10s model produced 57,998 

detections, and the YOLOv10m model generated 69,140 detections. 

These findings indicate that the larger-scale models (YOLOv10s and YOLOv10m) possess a markedly 

enhanced ability to capture object instances, attributable to their increased network depth and 

parameterization. The higher detection counts suggest that these models are more effective at leveraging 

multi-scale feature representations, thereby improving sensitivity to both small and distant objects. In 

contrast, the lightweight YOLOv10n, while computationally efficient, exhibits a more conservative detection 

capacity, which may limit its effectiveness in dense or complex scenes. 

4.1.2 Unique IDs Detected 

The number of unique IDs reflects the distinct individuals successfully tracked after association through the 

BoostTrack algorithm. The results show that the YOLOv10n model identified 700 unique IDs, while the 

YOLOv10s and YOLOv10m models detected 842 and 848 unique IDs, respectively. 

These findings suggest that although the lightweight YOLOv10n demonstrates considerable capacity to 

recognize individuals, the larger models exhibit superior robustness in maintaining consistent tracks across 

frames. These findings suggest that the larger models produce more unique IDs primarily due to higher 

detection recall, not necessarily superior identity preservation. In our real-time setup, identity stability is 

better reflected by IDF1 and ID switches, where YOLOv10n + BoostTrack performs more consistently. 

4.1.3 Confidence Score Analysis 

A descriptive analysis of the confidence scores highlights notable differences in the reliability of detections 

across the YOLOv10 variants. The YOLOv10n model produced a mean confidence of 0.635 with a relatively 

narrow spread (standard deviation = 0.013), indicating that its predictions are conservative and consistently 

clustered close to the detection threshold (approximately 0.60–0.64). In contrast, YOLOv10s and YOLOv10m 

exhibited mean confidence scores of 0.685 and 0.684, with substantially broader distributions (standard 

deviations = 0.077 and 0.074, respectively). 

This suggests that while YOLOv10n tends to generate stable but lower-confidence predictions, the larger 

models demonstrate greater variability, extending to higher confidence values. Indeed, YOLOv10s produced 

detections with confidence values up to 0.94, and YOLOv10m up to 0.92, reflecting their enhanced capacity to 

identify objects with stronger certainty under favorable conditions. However, the broader spread also 

indicates increased sensitivity to contextual complexity, where confidence can fluctuate depending on scale 

variations, occlusions, or background clutter. 

4.2 MOT Evaluation Results 

4.2.1 IDF1, Precision, and Recall 

To assess the quality of the tracking framework, we employed the IDF1, Precision, and Recall metrics, 

computed by comparing the detections produced by each YOLOv10 variant against the pseudo-ground-truth 

(PGT). 
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 IDF1 (ID F1-Score) reflects the balance between correctly identified trajectories and the number of ID 

switches. A higher IDF1 indicates stronger consistency in preserving identities across frames. 

 Precision measures the proportion of detections that were correct relative to all detections made. 

 Recall evaluates the ability of the detector-tracker pipeline to capture all ground-truth objects. 

The results demonstrate a clear scaling trend. On detection-only metrics, YOLOv10n yields lower precision 

and recall than YOLOv10s/m, consistent with its smaller capacity. However, in the end-to-end tracking 

pipeline, YOLOv10n + BoostTrack attains higher IDF1 and fewer ID switches. We attribute this to lower 

inference latency improving frame-to-frame association, which offsets the modest deficit in raw detection 

accuracy in our drone scenarios.  

Overall, larger models boost detection-only metrics, whereas YOLOv10n + BoostTrack provides stronger 

identity stability (higher IDF1, fewer ID switches) under real-time constraints. 

4.2.2 MOTA and ID Switches 

MOTA aggregates false positives, missed detections, and ID switches into a single score, while ID switches 

(IDs) quantify how often the tracker incorrectly reassigns an identity. Under our real-time constraints, the 

YOLOv10n + BoostTrack pipeline remains competitive on MOTA and yields fewer ID switches, reflecting 

more stable identity association. By contrast, the larger detectors (YOLOv10s/m) achieve higher detection 

precision/recall, but their increased latency and larger detection volume can reduce MOTA and increase ID 

switches due to more frequent ambiguous matches. 

Taken together, these results highlight a practical trade-off: larger models improve detection-only metrics, 

whereas the lightweight YOLOv10n configuration delivers stronger identity stability (higher IDF1, fewer 

IDs) and competitive MOTA in real-time drone MOT. Model choice should therefore reflect deployment 

goals—maximizing detection recall versus prioritizing identity preservation under tight latency budgets. 

4.3 Comparative Analysis Across Models 

To provide a holistic understanding of the experimental outcomes, this section synthesizes the evaluation 

results of YOLOv10n, YOLOv10s, and YOLOv10m across multiple performance dimensions. The comparison 

encompasses IDF1, Precision, Recall, MOTA, and ID Switches, supplemented by an examination of 

confidence score distributions. By integrating results from detection-level logs, MOT evaluations, and 

confidence-based analysis, we aim to uncover the underlying trade-offs between model scale, detection 

fidelity, and tracking stability in the proposed BoostTrack integration framework. 

4.3.1 Confidence Distribution Analysis 

The analysis of confidence score distributions provides insights into how each YOLOv10 variant calibrates its 

detection certainty and how this impacts downstream tracking performance. Figure 6 presents the confidence 

distributions for YOLOv10n/s/m (bin width 0.02). As shown in Figure 6, YOLOv10s/m exhibit heavier right 

tails (higher-confidence positives), whereas YOLOv10n concentrates more mass in the mid-confidence region.  

 

 

Fig 6. Confidence score distributions for YOLOv10n, YOLOv10s, and YOLOv10m. 

The histograms illustrate how each model assigns confidence values across detections. YOLOv10n shows a narrow 

distribution concentrated around 0.63–0.65, reflecting highly consistent but conservative predictions. YOLOv10s 

and YOLOv10m demonstrate broader distributions extending up to 0.90–0.95, indicating a wider dynamic range 
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and greater willingness to assign high confidence scores. These differences highlight a trade-off between stability 

(YOLOv10n) and expressive certainty (YOLOv10s/m), with direct implications for balancing false positives and 

recall in multi-object tracking. 

 

For YOLOv10n, the distribution is tightly concentrated around the 0.60–0.64 interval, with a mean confidence 

of 0.635 and a very low standard deviation of 0.013. This indicates that the model operates in a highly 

conservative mode, rarely producing overly high or low confidence values. While this consistency minimizes 

the risk of false positives, it also limits the model’s capacity to express strong certainty for true detections, 

potentially constraining recall in challenging scenes. 

In contrast, YOLOv10s exhibits a much wider spread, with a mean confidence of 0.685 and a standard 

deviation of 0.077. Its distribution extends up to 0.94, reflecting a model that is more willing to assign high 

confidence to detections it perceives as reliable. This behavior suggests that YOLOv10s is more aggressive in 

scoring, leading to stronger signals for true positives but at the cost of increased variability. Such variability 

can manifest as greater susceptibility to false alarms, particularly in cluttered or occluded frames. 

Similarly, YOLOv10m achieves a mean confidence of 0.684 with a standard deviation of 0.074, producing a 

distribution closely resembling YOLOv10s. Its detections also extend toward higher confidence regions (up 

to 0.92), indicating robustness when the model is confident. However, the broader variance means that 

predictions can oscillate between moderately low and very high values, necessitating careful threshold tuning 

for optimal performance. 

Overall, the comparative analysis underscores a key trade-off between conservatism and variability. 

YOLOv10n’s narrow, threshold-proximal distribution yields stable but less expressive detections, whereas 

YOLOv10s and YOLOv10m demonstrate higher dynamic range and confidence strength at the expense of 

consistency. These differences have downstream implications for multi-object tracking: stable but lower-

confidence detections favor identity preservation, while higher-confidence, variable outputs may enhance 

recall but risk frequent ID switches. 

4.3.2 Tracking Performance Metrics 

To evaluate the robustness of the proposed YOLOv10 + BoostTrack framework in drone-based multi-object 

tracking, we relied on widely adopted MOT (Multiple Object Tracking) performance metrics: IDF1, MOTA, 

precision, recall, and the number of ID switches. Each of these metrics highlights complementary aspects of 

tracking reliability, ranging from identity preservation to detection accuracy and consistency. 
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Fig 7. Comparison of tracking metrics (IDF1, MOTA, Precision, Recall, ID Switches) across 

YOLOv10n/s/m. YOLOv10n + BoostTrack shows higher IDF1 and fewer ID switches (identity 

stability), while YOLOv10s/m achieve higher detection precision/recall. 

IDF1 represents the harmonic mean of identification precision and recall, indicating how well the tracker 

preserves consistent identities over time. IDF1 comparisons in Figure 7 indicate that YOLOv10n + BoostTrack 

preserves identities more consistently than YOLOv10s/m under our real-time setup, while the larger models 

retain advantages on pure detection precision/recall.  MOTA, which aggregates false positives, false negatives, 

and ID switches into a single measure, shows a similar trend: the n-based pipeline remains competitive under 

our settings, whereas s/m tend to yield lower MOTA when constrained to real-time operation. This likely 

arises from latency-induced association errors that outweigh gains from higher raw detection counts.  For 

detection metrics, the larger models (s/m) achieve higher precision and recall. The n-based pipeline 

compensates at the tracking stage: lower inference latency supports more stable frame-to-frame association, 

which benefits identity preservation despite modestly lower detection scores.  Regarding ID switches, the n-

based configuration records fewer switches than s/m under identical tracking settings, indicating stronger 

identity stability—especially in sequences with camera motion and brief occlusions.  Overall, these results 

indicate a practical trade-off: larger detectors improve detection-only metrics, whereas YOLOv10n + 
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BoostTrack delivers more stable identities (higher IDF1, fewer ID switches) and competitive MOTA in real-

time drone MOT. Model selection should therefore reflect deployment goals—maximizing detection recall 

versus prioritizing identity stability under tight latency budgets. 

4.4 Discussion 

The experimental results clarify the trade-offs between model size, detection accuracy, and tracking stability 

in drone-based MOT. Rather than a single model dominating every metric, the findings show complementary 

strengths: larger detectors (YOLOv10s/m) lead on pure detection metrics (precision/recall), while the 

lightweight YOLOv10n, when paired with BoostTrack, yields stronger identity stability (higher IDF1, fewer 

ID switches) and competitive MOTA under real-time constraints. 

A plausible explanation is latency. Drone footage features rapid motion, scale changes, and short occlusions; 

under these conditions, faster inference improves frame-to-frame association and reduces identity 

fragmentation. The n-based pipeline benefits from this effect, whereas s/m produce more raw detections but 

can introduce association errors when inference is slower or detection volume is high. 

Importantly, we do not claim “near-perfect” scores or universally “negative” MOTA for any model. Instead, 

MOTA trends are consistent with the above trade-off: the n-based configuration remains competitive at real-

time speed, while s/m can experience lower effective MOTA when latency affects temporal consistency. 

From an application perspective, identity preservation (IDF1 and ID switches) is often critical for surveillance, 

search-and-rescue, and traffic monitoring. In our setting, YOLOv10n + BoostTrack maintains identities more 

reliably, whereas YOLOv10s/m are preferable when maximizing detection recall is the primary objective. 

Overall, these results suggest a practical selection rule: choose s/m when the deployment prioritizes detection 

coverage, and choose n when real-time identity stability is paramount. Future work should further optimize 

speed-aware architectures, camera-motion compensation, and motion-prediction modules to enhance 

robustness in agile drone scenarios. 

5. Limitations 

Our pseudo ground truth (PGT) was derived using a YOLOv10n-based configuration, which may introduce 

evaluation bias toward that detector. We mitigated this by comparing models under identical tracking settings 

and focusing on relative trends; nevertheless, future work should include manually annotated subsets or PGT 

generated by alternative detectors to validate robustness. 

6. Conclusion and Recommendations 

The experiments compared three YOLOv10 variants (n/s/m) within a BoostTrack-based pipeline using 

standard MOT metrics (IDF1, MOTA, precision, recall, and ID switches). The results show complementary 

strengths rather than one model dominating all metrics: the larger detectors (YOLOv10s/m) lead on pure 

detection metrics (precision/recall), while the lightweight YOLOv10n + BoostTrack configuration provides 

stronger identity stability (higher IDF1, fewer ID switches) and competitive MOTA under real-time 

constraints. 

These findings indicate a practical trade-off driven in part by latency: faster inference improves frame-to-

frame association and reduces identity fragmentation, whereas higher raw detection volume can increase 

ambiguous matches when latency is tighter. 

In practice, we recommend choosing s/m when the deployment prioritizes detection coverage, and choosing 

n when real-time identity preservation is paramount. This guidance aligns with drone-surveillance scenarios 

where computational budgets and stability of identities often outweigh marginal gains in detection-only 

scores. 

6.1 Future Works 

Future work will focus on scaling the approach across diverse aerial conditions and hardware constraints 

while strengthening identity preservation under occlusion and rapid camera motion. While the current results 
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are promising, several avenues for future research remain open to further enhance the robustness and 

applicability of drone-based multi-object tracking systems. One direction involves exploring advanced 

optimization strategies such as pruning, quantization, or knowledge distillation to reduce computational costs 

while preserving or even improving accuracy. Another promising direction is the integration of YOLOv10n 

with more advanced tracking frameworks, such as DeepSORT or ByteTrack, in order to strengthen identity 

preservation and improve robustness under occlusion or crowded scenes. 

Equally important is the evaluation of the framework across more diverse and challenging drone scenarios. 

Testing under varying altitudes, adverse weather conditions, or nighttime environments would provide 

stronger evidence of its generalizability to real-world applications. Beyond single-drone systems, extending 

this work toward coordinated multi-drone collaboration could significantly improve coverage, reduce blind 

spots, and enhance reliability in large-scale surveillance or search-and-rescue operations. Finally, deploying 

the YOLOv10n + BoostTrack framework on real drone hardware represents a crucial step toward validating 

its practicality, where factors such as power consumption, communication delays, and real-time decision-

making constraints will play a decisive role. 

By pursuing these directions, future work can further strengthen the reliability, efficiency, and scalability of 

lightweight tracking models, ensuring their suitability for real-world drone-based applications where both 

accuracy and stability are critical. 
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